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Abstract 
Weed management is a major component of a soybean (Glycine max L.) production 
system; thus, managers need tools to help them distinguish soybean from weeds. 
Vegetation indices derived from light reflectance properties of plants have shown 
promise as tools to enhance differences among plants. The objective of this study was 
to evaluate normalized difference vegetation indices derived from multispectral leaf 
reflectance data as input into random forest machine learner to differentiate soybean 
and three broad leaf weeds: Palmer amaranth (Amaranthus palmeri L.), redroot pig-
weed (A. retroflexus L.), and velvetleaf (Abutilon theophrasti Medik). Leaf reflec-
tance measurements were acquired from plants grown in two separate greenhouse 
experiments conducted in 2014. Twelve normalized difference vegetation indices 
were derived from the reflectance measurements, including advanced, green, green- 
red, green-blue, and normalized difference vegetation indices, shortwave infrared 
water stress indices, normalized difference pigment and red edge indices, and struc-
ture insensitive pigment index. Using the twelve vegetation indices as input variables, 
the conditional inference version of random forest (cforest) readily distinguished 
soybean and velvetleaf from the two pigweeds (Palmer amaranth and redroot pig-
weed) and from each other with classification accuracies ranging from 93.3% to 
100%. The greatest errors were observed between the two pigweed classes, with clas-
sification accuracies ranging from 70% to 93.3%. Results suggest combining them 
into one class to increase classification accuracy. Vegetation indices results were 
equivalent to or slightly better than results obtained with sixteen multispectral bands 
used as input data into cforest. This research further supports using vegetation in-
dices and machine learning algorithms such as cforest as decision support tools for 
weed identification. 
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1. Introduction 

Weed management is a major component of a crop production system. To implement 
weed management strategies, managers need tools to help them distinguish crop from 
weeds and at times, weeds from other weeds. The latter is important in determining 
which combination of chemical, mechanical, and/or biological control techniques to 
use for weed control. In 2012, agricultural producers in the United States (U.S.) spent 
$13.7 billion for agricultural chemicals [1]. Targeted chemical spraying reduces the 
amount of herbicide applied, thus decreasing cost and protecting the environment. 

Palmer amaranth, redroot pigweed, and velvetleaf infestations occur in soybean 
fields throughout the eastern U.S. [2] [3] [4]. The weeds produce numerous seeds and 
establish large populations in soybean fields, thus reducing yields. Dense populations of 
Palmer amaranth and redroot pigweeds can damage agricultural equipment during 
harvesting. Populations of Palmer amaranth and redroot pigweed have become resis-
tant to some commonly used herbicides, such as glyphosate. Velvetleaf is also difficult 
to control with glyphosate. Therefore, managers need effective tools to identify Palmer 
amaranth, redroot pigweed, and velvetleaf to implement the correct strategy to control 
them. Remote sensing systems measuring light reflectance properties of plants have 
shown good potential for weed crop discrimination, including soybean and weed dis-
crimination [5] [6]. The success of remotely sensed data for crop and weed discrimina-
tion is dependent on the spectral sensitivity of the recording device and the algorithms 
used to process the data. 

Vegetation indices derived from various mathematical combinations (i.e., ratio, dif-
ference, normalized difference) of hyperspectral and multispectral data have shown 
promise as tools for agricultural application, including determining canopy water con-
tent and water stress of crops [7] [8] [9], assessing insect and disease infestations [10] 
[11] [12] [13] [14], differentiating crops from weeds [15]-[20], and assessing nutrient 
status of plants [21] [22]. The advantages of using vegetation indices over single wave-
bands include enhancing differences in the spectral properties of plants, while dimi-
nishing the influence of relief, nonphotosynthesizing elements of plants, atmosphere, 
soil background, shadow, and viewing and illumination geometry on spectral data [23] 
[24]. Gaps exist on using vegetation indices for crop weed discrimination and weed to 
weed discrimination, especially in soybean production systems. 

Random forest has gain popularity as a tool in numerous disciplines including re-
mote sensing. It is a nonparametric ensemble method that uses numerous classification 
trees to predict (regression) or determine (classification) the class of an unknown sam-
ple [25], hence the name random forest. The algorithm selects a random number of 
samples from the database provided by the analyst and then uses the samples to develop 
a decision tree. Sample collection is based on a bootstrap procedure with replacement. 
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The same process is repeated for each tree in the forest; a different model is constructed 
for each tree. 

Samples randomly selected to derive the model for each tree are referred to as 
“in-bag” samples, and the samples not used to create the model are called “out-of-bag” 
samples. Typically, 2/3 and 1/3 of the samples are used as “in-bag” samples and 
“out-of-bag” samples, respectively. Based on the “in-bag” and “out-of-bag” concept, 
random forest does not need a separate testing set to evaluate the model.  

To test classification or prediction accuracy, decision trees in which a sample is 
“out-of-bag” are predicted or classified with trees in which the sample is not “in-bag”. 
The vote of each tree is tallied; then the unknown sample is assigned the class in which 
it received the most votes. For each tree, a subset of the variables is used to develop the 
split. Also, a variable importance ranking is derived with the algorithm. Analysts can 
evaluate the ranking and identify variables that are relevant to the model for prediction 
or classification problems, leading to reduction in the number of variables used for the 
analysis.  

Random forest ranks very well among other classifiers [26]. Recently, it was ranked 
in the top ten of 100 classifiers tested for classification purposes [26]. It is capable of 
processing large datasets, can analyze numerous variables without deletion, is robust 
for analysis of datasets with missing variables, and has the ability to process unbalanced 
datasets. Models derived for classification can be used on other datasets. Light reflec-
tance data recorded from sensors on-board satellite, airborne, and ground-based plat-
forms have shown promise as input data for random forest to use for classification [27] 
[28] [29] [30] and regression [31] [32] problems. 

Currently, no information is available on using vegetation indices derived from mul-
tispectral data as input into random forest for soybean weed discrimination. The objec-
tive of this study was to evaluate normalized difference vegetation indices as input into 
random forest to differentiate soybeans and three broad leaf weeds: Palmer amaranth, 
redroot pigweed, and velvetleaf. The study focused on leaf multispectral reflectance da-
ta of simulated World View 3 satellite sensor bands. 

2. Materials and Methods 
2.1. Experimental Setup 

Two experiments were completed in 2014 in which 30 replicates of soybean variety 
4928LL (LL-liberty link), Palmer amaranth, redroot pigweed, and velvetleaf were grown 
in a greenhouse located at USDA-ARS, Stoneville, MS. Planting dates were June 13, 
2014, and August 28, 2014, for experiments one and two, respectively. Seeds of the dif-
ferent plants (i.e., soybean variety 4928LL, Palmer amaranth, redroot pigweed, and vel-
vetleaf) were sown into plugs. After emergence, the plant species were transferred to 
two liter pots. All plant species were exposed to a fourteen-hour photoperiod, and light 
was supplemented at the beginning and ending of the day with sodium vapor lamps. 
Day/night temperatures of the greenhouse was maintained at 28˚C/24˚C ± 3˚C, respec-
tively. The soybean variety used in the study had an indeterminate growth habit and 
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gray pubescence and was assigned to maturity group 4.9. The weed seeds were obtained 
from a seed bank maintained at the laboratory. 

2.2. Leaf Reflectance Measurements 

Leaf reflectance measurements were obtained with a plant contact probe attached to a 
spectroradiometer (Fieldspec 3, ASD Inc. Boulder, Colorado) sensitive to a spectral 
range of 350 to 2500 nm. The contact probe has its own light source allowing the user 
to collect data anytime during the day or night. Reflectance measurements were col-
lected from the most recently matured leaf of each plant; each reading was an average 
of fifteen readings. The spectroadiometer was calibrated in fifteen minute intervals with 
a white spectralon panel. Leaf reflectance measurements were collected prior to the 
plants reaching 1 foot tall. The goal of weed management strategies is to detect and kill 
the weeds in the vegetative growth stages and prior to the seeds reaching full maturity 
levels. 

2.3. Post Processing of Reflectance Measurements 

Multispectral data simulating the spectral bands of the World View 3 satellite sensor 
were derived from the hyperspectral spectroradiometer data (Table 1). These spectral 
bands were chosen because they represented data in the visible, red edge, near infrared, 
and shortwave infrared regions of the light spectrum. Twelve vegetation indices were 
created with the multispectral spectral bands (Table 2). The selected indices have shown 
good potential for assessing leaf pigments [33]-[38], leaf internal structure [36], and leaf 
water content [39]. 

 
Table 1. Sixteen-spectral bands simulating World View 3 satellite sensor spectral bands. They 
were used as input variables into cforest for soybean and weed discrimination. 

Band name Acronym Bandwidth 

Coastal C 400 - 450 nm 

Blue B 450 - 510 nm 

Green G 510 - 580 nm 

Yellow Y 585 - 625 nm 

Red R 630 - 690 nm 

Red edge RE 705 - 745 nm 

Near infrared 1 NIR1 770 - 895 nm 

Near infrared 2 NIR2 860 - 1040 nm 

Shortwave infrared 1 SWIR1 1195 - 1225 nm 

Shortwave infrared 2 SWIR2 1550 - 1590 nm 

Shortwave infrared 3 SWIR3 1640 - 1680 nm 

Shortwave infrared 4 SWIR4 1710 - 1750 nm 

Shortwave infrared 5 SWIR5 2145 - 2185 nm 

Shortwave infrared 6 SWIR6 2185 - 2225 nm 

Shortwave infrared 7 SWIR7 2235 - 2285 nm 

Shortwave infrared 8 SWIR8 2295 - 2365 nm 
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Table 2. Vegetation indices used as input into cforest for soybean and weed discrimination. 

Vegetation index Acronym Formula for vegetation indices Spectral bandsa (nm) 

Advanced Normalized 
Vegetation Index [18] 

ANVI 
ANVI1 = (NIR1 − C)/(NIR1 + C) 
ANVI2 = (NIR1 − B)/(NIR1 + B) 

C: 400 - 450, 
B: 450 - 510, 
NIR1: 770 - 895 

Green Normalized 
Difference Vegetation 
Index [35] 

GNDVI GNDVI = (NIR1 − G)/(NIR1 + G) 
G: 510 - 580, 
NIR1: 770 - 895 

Green-Red Normalized 
Difference Vegetation 
Index [14] 

GRNDVI GRNDVI = (G − R)/(G + R) 
G: 510 - 580, 
R: 630 - 690 

Green-Blue Normalized 
Difference Vegetation 
Index (This paper) 

GBNDVI GBNDVI = (G − B)/(G + B) 
G: 510 - 580, 
B: 450 - 510 

Normalized Difference 
Vegetation Index [54] 

NDVI NDVI = (NIR1 − R)/(NIR1 + R) 
R: 630 - 690, 
NIR1: 770 - 895 

Shortwave Infrared 
Water Stress 
Index [8] [39] 

SIWSI 

SIWSI1 =  
(NIR1 − SWIR3)/(NIR1 + SWIR3) 
SIWSI2 = 
(NIR1 − SWIR6)/(NIR1 + SWIR6) 

NIR1: 770 - 895, 
SWIR3: 1640 - 1680, 
SWIR6: 2185 - 2225 

Normalized Difference 
Pigment Index [33] 

NPCI NPCI = (R − C)/(R + C) 
C: 400 - 450, 
R: 630 - 690 

Normalized Difference 
Red Edge Index [53] 

NDRE NDRE = (NIR1 − RE)/(NIR1 + RE) 
RE: 705 - 745, 
NIR1: 770 - 895 

Structure Insensitive 
Pigment Index [34] 

SIPI 
SIPI1 = (NIR1 − C)/(NIR1 + R) 
SIPI2 = (NIR1 − B)/(NIR1 + R) 

C: 400 - 450, 
B: 450 - 510, 
R: 630 - 690, 
NIR1: 770 - 895 

aC = coastal, B = blue, G = green, R = red, RE = red edge, NIR = near infrared, and SWIR = shortwave infrared. 

 
Broadband and narrowband data have been used to develop vegetation indices. 

Therefore, the simulated band center wavelength closest to center wavelengths used in 
other studies were employed in developing each vegetation index. Periodically, two ve-
getation indices were developed for a designated index because the band centers were 
equidistance from the band centers used by other investigators. These include the ad-
vanced normalized difference vegetation index (ANVI), shortwave infrared water stress 
index (SIWSI), and structure insensitive pigment index (SIPI). The hsdar package 
(hyperspectral data analysis in R) of R [40] and base R packages [41] were used to de-
velop the sixteen spectral bands and the twelve vegetation indices, respectively. 

2.4. Classification 

The conditional inference version of random forest (cforest) was used for the classifica-
tions. Researchers have suggested using the cforest version of random forest if the data 
are highly correlated [42]. Cforest is more stable in deriving variable importance values 
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in the presence of highly correlated variables, thus providing better accuracy in calcu-
lating variable importance [42]. 

Differences of cforest compared with the original version of random forest are as 
follows. Cforest employs conditional inference trees as base learners; random forest 
uses classification and regression trees as base learners [42] [43]. Cforest develops un-
biased decision trees based on subsampling without replacement instead of using boot-
strap samples. The algorithm uses the conditional permutation scheme described by 
Strobl et al. [42] [47] to determine variable importance ranking.  

Two parameters were adusted to develop the cforest models, mtry and ntree. The 
former respresents the number of random variables to use in each tree; the latter cha-
racterizes the number of trees. 

Model stability was tested using the following procedure [6] [44]: 1) develop model 
using the default mtry (5) and ntree (500) values, 2) tabulate and review variable of 
importance rankings, 3) adjust starting seed (i.e., the random generator used as a start-
ing point for sampling) and rerun the model using the default mtry and ntree values, 4) 
accept model if variable of importance rankings are consistent between the first and 
second runs; if not proceed to step five, 5) increase ntree by 500 and rerun model fol-
lowing steps one thru four. The procedure was repeated until the variable of impor-
tance rankings were consistent between the first and second runs. The party package 
[45] [46] [47] of R was used to complete the classifications and to obtain the variable 
importance readings. 

For each date, two datasets were evaluated as input into the cforest algorithm: 1) 
twelve vegetation indices dataset and 2) sixteen band multispectral dataset. Overall, us-
er’s, and producer’s accuracies, and the kappa coefficient, were tabulated to compare 
accuracies of the classifications [48]. 

3. Results 

Identical accuracy results were obtained for the vegetation indices and the multispectral 
data classifications for the June 30, 2014 dataset (Table 3). Overall accuracy and the 
kappa coefficient were 90.8% and 0.878, respectively. User’s and producer’s accuracies 
ranged from 76.7% to 100%. The highest user’s and producer’s accuracies were ob-
tained for the soybean class. The lowest user’s and producer’s accuracies were observed 
for the redroot pigweed and Palmer amaranth classes, respectively. 

For the September 17, 2014 dataset, the vegetation indices achieved higher classifica-
tion accuracies than the multispectral dataset with the differences ranging from 0.7% to 
3.4% for user’s, producer’s, and overall accuracies (Table 3). Similar trends were ob-
served in the classification accuracies of the vegetation indices and multispectral data. 
The best classification accuracies were achieved for the soybean class. Also, velvetleaf 
was tied for first for the producer’s accuracy. The lowest user’s and producer’s accura-
cies were observed for the redroot pigweed and Palmer amaranth classes, respectively. 

Variable importance rankings indicated that eight and nine of the twelve indices were 
important to the classification of the June and September vegetation indices datasets,  
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Table 3. Accuracy results for the cforest classifications for each dataset. 

Accuracy 
measurements 

 Datasets  

 
Vegetation indices 

(June 30, 2014) 
Multispectral 

(June 30, 2014) 
Vegetation indices 

(September 17, 2014) 
Multispectral 

(September 17, 2014) 

User’s accuracy 
soybean 

93.8% 93.8% 96.7% 93.3% 

User’s accuracy 
Palmer amaranth 

92.0% 92.0% 80.7% 80.0% 

User’s accuracy 
redroot pigweed 

84.4% 84.4% 78.8% 73.5% 

User’s accuracy 
velvetleaf 

93.3% 93.3% 93.5% 90.3% 

Producer’s 
accuracy 
soybean 

100% 100% 96.7% 93.3% 

Producer’s 
accuracy Palmer 
amaranth 

76.7% 76.7% 70.0% 66.6% 

Producer’s 
accuracy redroot 
pigweed 

93.3% 93.3% 86.7% 83.3% 

Producer’s 
accuracy 
velvetleaf 

93.3% 93.3% 96.7% 93.3% 

Overall 
accuracy 

90.8% 90.8% 87.5% 84.2% 

Kappa 
coefficient 

0.878 0.878 0.833 0.789 

 
respectively (Figure 1). SIWSI2 was ranked as the most important vegetation index 
used by the classification models. Its variable importance score was approximately 1.5 
times greater than the second ranked vegetation index score. 

The multispectral datasets variable importance rankings are summarized in Figure 1. 
Shortwave infrared bands had strong to moderate variable importance rankings for the 
June dataset. NIR2, G, RE, and NIR1 bands had moderate to low variable importance 
scores. All of the spectral bands were important to the September 17, 2014 multispectral 
dataset classification model because their variable importance rankings were distin-
guishable from the zero line. The highest and lowest rankings were assigned to G and C 
bands, respectively. Finally, more trees were needed to obtain stable variable impor-
tance rankings for the multispectral datasets compared with the vegetation indices da-
tasets (Table 4). That aspect could be attributed to the multispectral bands datasets 
having more variables than the vegetation indices datasets, thus requiring more trees to 
be used for the stabilization process. 
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Figure 1. Variable importance rankings for vegetation indices and multispectral data used as input into cforest for classification. 

 
Table 4. Parameters used for cforest classifications. 

Dataset Date mtry a ntree 

Vegetation indices 06/30/2014 5 1000 

Multispectral 06/30/2014 5 1500 

Vegetation indices 09/17/2014 5 500 

Multispectral 09/17/2014 5 1000 

amtry = number of predictors to use when splitting a node; ntree = number of trees grown. 

4. Discussions 

Using vegetation indices as input variables for soybean and weed discrimination, cfor-
est achieved classification accuracies that were equivalent to or slightly better than clas-
sification accuracies obtained with multispectral bands as input variables (Table 3). 
Kappa coefficients for the vegetation indices classifications indicated an almost perfect 
agreement (values within the range of 0.81 - 1.00, [49]) between reference and pre-
dicted data. Almost perfect to substantial agreement (i.e., values within the range of 
0.61 - 0.80, [49]) occurred between reference data and predicted data for the June 30 
and September 17, 2014 multispectral datasets, respectively. Errors for soybean and 
velvetleaf classes were attributed to the former being misclassified as the latter and vice 
versa. The cforest algorithm using vegetation indices or multispectral bands as input 
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had problems in distinguishing between Palmer amaranth and redroot pigweed, sug-
gesting combining them into one class. 

Consistently, indices derived with SWIR and NIR bands, the G and NIR bands, and 
G and R bands were considered important in separating the plant species. SIWSI1 and 
SIWSI2 were ranked in the top three for vegetation indices variables when evaluating 
both datasets (Figure 1). Those indices are sensitive to moisture content in plant leaves 
[50] [51], suggesting leaf succulence was important in crop weed separation and weed 
to weed separation. The SWIR band serves as a measure of water content, leaf internal 
structure, and dry matter; whereas, the NIR band serves as measurement of only leaf 
internal structure and dry matter [50]. When combined into an index, SIWSI provides 
a measurement of leaf water content expressed as equivalent water thickness. 

Also, GRNDVI was ranked within the top three indices for each date supporting the 
role that plant pigment played in separating the plant species. Other pigment indices 
having relevant variable importance values on both dates were GNDVI and NPCI. 
NDVI, the most wildly used vegetation index throughout the literature [52] [53] [54], 
was ranked eighth and eleventh according to the variable importance tabulated for the 
June 30, 2014 and September 17, 2014 datasets respectively, indicating its weak relev-
ance for discriminating between the plant species. 

The vegetation indices were derived using the multispectral bands (Table 1). Thus, 
the variable importance rankings of the former were easily understood by evaluating 
the variable importance rankings of the latter. SWIR bands 2 - 8 were a necessity for 
differentiating between the plant species. Therefore, vegetation indices derived with one 
those bands would be ranked higher on the variable importance scale than a vegetation 
index excluding SWIR bands (i.e., SWIR bands 2 - 8). The findings of this study are 
similar to those of [5], which indicated shortwave-infrared data were important for 
soybean weed discrimination. Their study focused on the following weeds discrimina-
tion from soybean: hemp sesbania [Sesbania exaltata (Raf.) Rydb. ex. A.W. Hill], palm 
leaf morning glory (Ipomoea wrightii Gray), pitted morning glory (Ipomoea lacunose 
L.), prickly sida (Sida spinose L.), sicklepod [Senna obtusifolia (L.) H.S. Irwin and Bar-
naby], and small flower morning glory [Jacquemontia tamnifolia (L.) Griseb.]. 

Overall, this study demonstrated that vegetation indices derived from leaf reflectance 
data can be used as input into cforest for differentiating soybean, velvetleaf, and two 
pigweeds. It is important to note that the data were collected using pure leaf spectra and 
not canopy spectra. For canopy spectra, some differences will occur due to in-canopy 
shadowing, leaf orientation, and differences in leaf area. One of the strengths of vegeta-
tion indices is that they are influenced less by shadowing and sensor viewing angle than 
multispectral bands, indicating the benefit of using them at the canopy level. 

5. Conclusion 

Vegetation indices derived from spectral data simulating World View 3 bands showed 
promise as input variables into cforest for discriminating soybean and three weed spe-
cies. Indices consisting of shortwave infrared bands were important for plant species 
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differentiation. Also, the analyst should consider combining redroot pigweed and Pal-
mer amaranth into one class, pigweed. If different herbicides were going to be used to 
treat the pigweeds and the velvetleaf plants, the results indicate that the cforest algo-
rithm could use vegetation indices derived from leaf light reflectance data to accurately 
identify pigweeds, velvetleaf, and soybean plants. This research further supports using 
vegetation indices and machine learning algorithms such as cforest as decision support 
tools for weed and crop differentiation. 
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